Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
1.
Parasit Vectors ; 17(1): 192, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654385

RESUMO

BACKGROUND: Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS: We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS: Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS: Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.


Assuntos
Angiostrongylus cantonensis , Metabolismo Energético , Hormônios Hipotalâmicos , Melaninas , Hormônios Hipofisários , Infecções por Strongylida , Animais , Angiostrongylus cantonensis/efeitos dos fármacos , Melaninas/metabolismo , Camundongos , Hormônios Hipotalâmicos/metabolismo , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/parasitologia , Hormônios Hipofisários/metabolismo , Metabolismo Energético/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Masculino , Feminino
2.
J Comp Neurol ; 532(2): e25588, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335050

RESUMO

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Assuntos
Cocaína , Hormônios Hipotalâmicos , Animais , Feminino , Masculino , Camundongos , Anfetaminas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
3.
Gen Comp Endocrinol ; 350: 114477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
4.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38368624

RESUMO

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Assuntos
Neurônios , Neuropeptídeo Y , Ratos Sprague-Dawley , Animais , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino , Ratos , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Saporinas/farmacologia , Neuropeptídeos/metabolismo , Desoxiglucose/farmacologia , Melaninas/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Hormônios Hipotalâmicos/metabolismo , Orexinas/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hormônios Hipofisários/metabolismo , Glucose/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos
5.
Peptides ; 172: 171128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070684

RESUMO

It has been revealed that hypothalamic neurons containing the peptide, melanin-concentrating hormone (MCH) can influence learning [1] and memory formation [2], but the cellular mechanisms by which they perform this function are not well understood. Here, we examine the role of MCH neural input to the hippocampus, and show in vitro that optogenetically increasing MCH axon activity facilitates hippocampal plasticity by lowering the threshold for synaptic potentiation. These results align with increasing evidence that MCH neurons play a regulatory role in learning, and reveal that this could be achieved by modulating plasticity thresholds in the hippocampus.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hipocampo/metabolismo , Hormônios Hipofisários , Neurônios/metabolismo , Melaninas
6.
Int J Neuropsychopharmacol ; 27(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135278

RESUMO

BACKGROUND: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that projects throughout the central nervous system, including the noradrenergic locus coeruleus (LC). Our previous study suggested that MCH/MCH receptor 1 (MCHR1) in the LC may be involved in the regulation of depression. The present study investigated whether the role of MCH/MCHR1 in the LC in depression-like behaviors is associated with the regulation of norepinephrine. METHOD: Chronic unpredictable stress (CUS) and an acute intra-LC microinjection of MCH induced depression-like behaviors in rats. The MCHR1 antagonist SNAP-94847 was also microinjected in the LC in rats that were suffering CUS or treated with MCH. The sucrose preference, forced swim, and locomotor tests were used for behavioral evaluation. Immunofluorescence staining, enzyme-linked immunosorbent assay, western blot, and high-performance liquid chromatography with electrochemical detection were used to explore the mechanism of MCH/MCHR1 in the regulation of depression-like behaviors. RESULTS: CUS induced an abnormal elevation of MCH levels and downregulated MCHR1 in the LC, which was highly correlated with the formation of depression-like behaviors. SNAP-94847 exerted antidepressant effects in CUS-exposed rats by normalizing tyrosine hydroxylase, dopamine ß hydroxylase, and norepinephrine in the LC. An acute microinjection of MCH induced depression-like behaviors through its action on MCHR1. MCHR1 antagonism in the LC significantly reversed the MCH-induced downregulation of norepinephrine production by normalizing MCHR1-medicated cAMP-PKA signaling. CONCLUSIONS: Our study confirmed that the MCH/MCHR1 system in the LC may be involved in depression-like behaviors by downregulating norepinephrine production. These results improve our understanding of the pathogenesis of depression that is related to the MCH/MCHR1 system in the LC.


Assuntos
Hormônios Hipotalâmicos , Locus Cerúleo , Ratos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Norepinefrina , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários/farmacologia , Melaninas/farmacologia
7.
Neuropeptides ; 100: 102349, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269608

RESUMO

Prolactin-releasing peptide (PrRP) has been investigated as a potential therapeutic for diabetes by the effect of food intake reduction, increasing leptin signaling, and insulin tolerance. Recent studies focused on its synaptogenesis and protective effects against neurodegeneration. Whereas 1,2-diacetylbenzene (DAB), a common metabolite of a neurotoxicant 1,2-diethyl benzene, causes memory impairment and neurotoxicity partly through the inflammatory process. Our present study assessed the effect of PrRP in microglia and its action in balancing the inflammation to protect against DAB. We observed that PrRP modulated NADPH oxidase - regulated NLRP3 inflammasome and PRL signaling pathways differently between physical and toxic conditions in microglia.


Assuntos
Hormônios Hipotalâmicos , Doenças Neuroinflamatórias , Humanos , Hormônio Liberador de Prolactina/farmacologia , Prolactina/metabolismo , Hormônios Hipotalâmicos/metabolismo
8.
Front Neuroendocrinol ; 70: 101069, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149229

RESUMO

Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia , Neurônios/metabolismo , Melaninas/farmacologia , Melaninas/fisiologia , Hipotálamo/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/fisiologia , Neurotransmissores , Ácido gama-Aminobutírico
9.
Fish Physiol Biochem ; 49(2): 385-398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37043055

RESUMO

We examined neuronal responses of hypothalamic melanin-concentrating hormone (MCH) and corticotropin-releasing hormone (CRH) to background color in the self-fertilizing fish, Kryptolebias marmoratus. Fish were individually reared in lidless white or black cylindrical plastic containers for 15 days. The number of MCH-immunoreactive (ir) cell bodies in the nucleus lateralis tuberis (NLT) of the hypothalamus was significantly greater in the white-acclimated fish, while no significant differences were observed in the nucleus anterior tuberis (NAT) of the hypothalamus. Significant differences were not seen in the number of CRH-ir cell bodies in the NLT between the groups. The body of the white- and black-acclimated fish appeared lighter and darker, respectively, compared with the baseline color. In the black-acclimated fish, feeding activity was significantly greater with a tendency toward higher specific growth rate compared with the observations in white-acclimated fish. No significant inter-group cortisol level differences were observed. These results indicate that background color affects MCH neuronal activity in the NLT as well as body color adaptation but does not affect CRH neuronal activity in K. marmoratus.


Assuntos
Hormônios Hipotalâmicos , Peixes Listrados , Animais , Hormônio Liberador da Corticotropina , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários , Melaninas , Hipotálamo/metabolismo , Peixes Listrados/metabolismo
10.
Neuroscience ; 522: 1-10, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121379

RESUMO

Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.


Assuntos
Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Masculino , Ratos , Camundongos , Animais , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Histamina , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas , Neurônios/metabolismo , Etanol
11.
Nat Commun ; 14(1): 1755, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36990984

RESUMO

The lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca2+ activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses. MCH neuron activity also increases during eating, and this response is highly predictive of caloric consumption and declines throughout a meal, thus supporting a role for MCH neurons in the positive feedback consummatory process known as appetition. These physiological MCH neural responses are functionally relevant as chemogenetic MCH neuron activation promotes appetitive behavioral responses to food-predictive cues and increases meal size. Finally, MCH neuron activation enhances preference for a noncaloric flavor paired with intragastric glucose. Collectively, these data identify a hypothalamic neural population that orchestrates both food-motivated appetitive and intake-promoting consummatory processes.


Assuntos
Hormônios Hipotalâmicos , Ratos , Masculino , Animais , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Hormônios Hipofisários , Melaninas , Região Hipotalâmica Lateral/metabolismo , Neurônios/metabolismo
12.
J Chem Neuroanat ; 129: 102241, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738851

RESUMO

The amylin and the melanin-concentrating hormone [MCH] are two peptides related to energetic homeostasis. During lactation, it is possible to locate neurons expressing these peptides in the preoptic area of rat dams. In addition, it was demonstrated that the number of MCH neurons in this region is modulated by litter size. Taken together, the aims of this work were (1) to verify the time course of amylin immunoreactivity during lactation; (2) to verify whether litter size modulates the number of amylin-ir neurons (3) to verify whether there is colocalization between the amylin-ir and MCH-ir neurons. Our results show that (1) there is an increase in the number of amylin-ir neurons during lactation, which reaches a peak at postpartum day 19 and drastically reduces after weaning; (2) there is no correlation between litter size and the number of amylin-ir neurons; and (3) there is minimal overlap between amylin-ir and MCH-ir neurons.


Assuntos
Hormônios Hipotalâmicos , Área Pré-Óptica , Feminino , Ratos , Animais , Área Pré-Óptica/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Hormônios Hipofisários , Hormônios Hipotalâmicos/metabolismo , Melaninas , Lactação , Neurônios/metabolismo
13.
Peptides ; 163: 170975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36791916

RESUMO

Melanin-concentrating hormone (MCH) is a peptide related to the reproductive function by interacting with the hypothalamus-pituitary-gonadal axis. In addition to the MCH central production, it is also found in the blood with a putative role as a neurohormone. Thereby, our focus is on steroid hormones' role in regulating centrally produced MCH in the incerto-hypothalamic area (IHy) and the peripheral MCH in the serum. For this, we investigated the effect of estradiol and/or progesterone injection on the number of MCH immunoreactive (MCH-ir) neurons at the IHy and serum levels. For further study of the role of progesterone, we analyzed the effect of blockade of progesterone receptors by its antagonist on MCH-ir neurons at the IHy and serum. To identify whether such regulation over MCH is established before sexual maturation, we assessed the effect of peripubertal removal of steroid hormones on MCH-ir neurons at the IHy and serum levels at adult age. Our results show that injecting estradiol in ovariectomized female rats reduces the number of MCH-ir neurons in the IHy, in addition to its serum levels. Blockade of progesterone receptors in intact females increases the number of MCH-ir neurons in the IHy and its serum concentration. The regulation of these hormones over the MCH peptidergic system is established before sexual maturation, once the peripubertal removal of the ovaries changes the serum levels of MCH and the number of MCH-ir neurons in the IHy of adult females. Such results support the inhibitory role of steroid hormones over the MCH system.


Assuntos
Hormônios Hipotalâmicos , Progesterona , Feminino , Ratos , Animais , Estradiol , Receptores de Progesterona , Hormônios Hipofisários , Hipotálamo/metabolismo , Hormônios Hipotalâmicos/metabolismo , Melaninas
14.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
15.
J Chem Neuroanat ; 128: 102208, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36476756

RESUMO

The hypothalamus plays a role in reproductive cycle control, and it is a site of action of steroid hormones. Throughout the production of melanin-concentrating hormone (MCH), the hypothalamus shows adaptive changes during lactation. Therefore, in this work, we aimed to test the effects of estrogen and progesterone manipulation on MCH-immunoreactive (ir) neurons in hypothalamic brain areas related to reproductive behavior and on the MCH serum concentration. Our results show that the removal of steroid hormones by ovariectomy increases the number of MCH-ir neurons in the medial preoptic area (MPOA) and incerto-hypothalamic area (IHy) but not in the anterior part of the paraventricular nucleus of the hypothalamus (PVHa). The MCH in the serum levels also increases. In accordance, the injection of estradiol alone or estradiol and progesterone decreased the number of MCH-ir neurons in the MPOA and IHy, as well as its serum levels. The MPOA and IHy are the brain areas targeted by the steroid hormone inhibitory effect of the MCH system during lactation. This effect is also reflected in the MCH serum levels.


Assuntos
Hormônios Hipotalâmicos , Comportamento Reprodutivo , Feminino , Humanos , Progesterona , Lactação , Hormônios Hipofisários , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas , Estrogênios , Neurônios/metabolismo , Estradiol
16.
Poult Sci ; 101(12): 102227, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334429

RESUMO

Photoperiod is an important environmental factor that influence seasonal reproduction behavior in bird and GnIH can play a function in this process through the reproductive axis, and some studies suggest that GnIH may have a direct role at the gonadal level. To investigate the expression of GnIH and its effects on follicle development and steroidogenesis in quail ovaries under different photoperiods, 72 healthy laying quails of 8-wk-old were randomly divided into long day (LD) group [16 light (L): 8 dark (D)] (n = 36) and short day (SD) group (8L:16D) (n = 36). Samples were collected from each group on d1, d11, d22, and d36 of the experiment. The result showed that short day treatment upregulated the level of GnIH in the gonads (P < 0.05), decreased the expression level of CYP19A1,3ß-HSD, StAR, LHR, and FSHR and increased the expression level of AMH, AMHR2, GDF9, and BMP15 to inhibit follicle development and ovulation, thus affecting the egg production performance of quails. In vitro culture of quail granulosa cells and treatment with different concentrations of GnIH (0, 1, 10, and 100 ng/mL) for 24 h. Result showed that GnIH inhibited the levels of FSHR, LHR, and steroid synthesis pathways in granulosa cells, upregulated the levels of AMHR2, GDF9, and BMP15. The results suggest that the inhibition of follicle development and reduced egg production in quail by short day treatment is due to GnIH acting at the gonadal level, and GnIH affected the steroid synthesis by inhibiting gonadotropin receptors.


Assuntos
Hormônios Hipotalâmicos , Fotoperíodo , Feminino , Animais , Codorniz/metabolismo , Ovário/metabolismo , Hormônios Hipotalâmicos/metabolismo , Galinhas/metabolismo
17.
Exp Physiol ; 107(11): 1298-1311, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35930596

RESUMO

NEW FINDINGS: What is the central question of this study? Melanin-concentrating hormone (MCH) suppresses the hypercapnic chemoreflex: what is the mechanism by which this effect is produced? What is the main finding and its importance? MCH acting in the lateral hypothalamic area but not in the locus coeruleus in rats, in the light period, attenuates the hypercapnic chemoreflex. The data provide new insight into the role of MCH in the modulation of the hypercapnic ventilatory response. ABSTRACT: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide involved in a broad range of homeostatic functions including regulation of the hypercapnic chemoreflex. We evaluated whether MCH modulates the hypercapnic ventilatory response by acting in the lateral hypothalamic area (LHA) and/or in the locus coeruleus (LC). Here, we measured pulmonary ventilation ( V ̇ E ${\dot V_{\rm{E}}}$ ), body temperature, electroencephalogram (EEG) and electromyogram (EMG) of unanaesthetized adult male Wistar rats before and after microinjection of MCH (0.4 mM) or MCH receptor 1 (MCH1-R) antagonist (SNAP-94847; 63 mM) into the LHA and LC, in room air and 7% CO2 conditions during wakefulness and sleep in the dark and light periods. MCH intra-LHA caused a decreased CO2 ventilatory response during wakefulness and sleep in the light period, while SNAP-94847 intra-LHA increased this response, during wakefulness in the light period. In the LC, MCH or the MCH1-R antagonist caused no change in the hypercapnic ventilatory response. Our results suggest that MCH, in the LHA, exerts an inhibitory modulation of the hypercapnic ventilatory response during the light-inactive period in rats.


Assuntos
Região Hipotalâmica Lateral , Hormônios Hipotalâmicos , Masculino , Ratos , Animais , Dióxido de Carbono , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hipercapnia
18.
Neuroscience ; 491: 156-165, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35405302

RESUMO

Orexin and melanin-concentrating hormone (MCH) neurons constitute the energy balance circuitry that coordinates the fasting response. Orexin neurons mediate food foraging at the expense of energy storage, while MCH neurons promote energy storage by reducing energy expenditure and increasing food intake. It is unknown if these cell groups undergo plastic changes as hunger and metabolic changes escalate over time during fasting. To address this, we performed in vitro electrophysiological recording on orexin and MCH neurons in the lateral hypothalamus and perifornical area from rats fasted for 12 or 24 h or fed ad-libitum. Orexin neurons showed a transient decrease in presynaptic glutamate release at 12 h. This turned to an increase at 24 h of fasting, while membrane potential depolarized and AMPA receptor conductance increased. In contrast, MCH neurons were transiently depolarized at 12 h fasting along with increased presynaptic glutamate release. These changes reversed at 24 h, while the number of AMPA receptors decreased. Our results indicate that MCH neurons are preferentially activated during the early phase of fasting (12 h), which would protect against weight loss. With a longer fast, orexin neurons become activated, which would promote arousal and exploratory activity required for foraging behaviors. This alternating activation of these cell groups may reflect a dynamic balance of energy conservation and foraging behaviors to optimize energy balance during ongoing fasting.


Assuntos
Jejum , Hormônios Hipotalâmicos , Animais , Ácido Glutâmico/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Ratos
19.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437265

RESUMO

Hypothalamic melanin-concentrating hormone (MCH) neurons are important regulators of multiple physiological processes, such as sleep, feeding, and memory. Despite the increasing interest in their neuronal functions, the molecular mechanism underlying MCH neuron development remains poorly understood. We report that a three-dimensional culture of mouse embryonic stem cells (mESCs) can generate hypothalamic-like tissues containing MCH-positive neurons, which reproduce morphologic maturation, neuronal connectivity, and neuropeptide/neurotransmitter phenotype of native MCH neurons. Using this in vitro system, we demonstrate that Hedgehog (Hh) signaling serves to produce major neurochemical subtypes of MCH neurons characterized by the presence or absence of cocaine- and amphetamine-regulated transcript (CART). Without exogenous Hh signals, mESCs initially differentiated into dorsal hypothalamic/prethalamic progenitors and finally into MCH+CART+ neurons through a specific intermediate progenitor state. Conversely, activation of the Hh pathway specified ventral hypothalamic progenitors that generate both MCH+CART- and MCH+CART+ neurons. These results suggest that in vivo MCH neurons may originate from multiple cell lineages that arise through early dorsoventral patterning of the hypothalamus. Additionally, we found that Hh signaling supports the differentiation of mESCs into orexin/hypocretin neurons, a well-defined cell group intermingled with MCH neurons in the lateral hypothalamic area (LHA). The present study highlights and improves the utility of mESC culture in the analysis of the developmental programs of specific hypothalamic cell types.


Assuntos
Hormônios Hipotalâmicos , Células-Tronco Embrionárias Murinas , Animais , Proteínas Hedgehog/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo
20.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269579

RESUMO

Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Sistemas Neurossecretores/metabolismo , Obesidade/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Metabolismo Energético , Humanos , Região Hipotalâmica Lateral/metabolismo , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...